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Abstract

This paper gives necessary and sufficient conditions for the (n-dimensional) generalized free rigid
body to be in a state of relative equilibrium. The conditions generalize those for the case of the
three-dimensional free rigid body, namely that the body is in relative equilibrium if and only if its
angular velocity and angular momentum align, that is, if the body rotates about one of its principal
axes. For then-dimensional rigid body in the Manakov formulation, these conditions have a similar
interpretation. We use this result to state and prove a generalized Saari’s Conjecture (usually stated
for theN-body problem) for the special case of the generalized rigid body.
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1. Introduction

1.1. Introductory remarks

The notion of a relative equilibrium (that is, a dynamical orbit for a mechanical system
that also is the orbit of a one-parameter symmetry group) is a key ingredient for mechanical
systems with symmetry an idea that goes back to Routh and Poincaré in the 1800s. Relative
equilibria played an important role in some of the founding works of modern geometric
mechanics, such as[2], [23], and[14], and is now an important ingredient in the general
theory. For example, much modern research in geometric mechanics involves notions of
stability and bifurcation of relative equilibria. For the planarN-body problem, relative
equilibria are uniformly rotating rigid solutions, and therefore, such configurations have a
moment of inertia that is constant in time.

The present paper grew out of recent research activity onSaari’s Conjecture[20]: if a
solution of theN-body problem of celestial mechanics has a constant moment of inertia,
then it must be a relative equilibrium. Attempts to answer this conjecture sparked a number
of interesting works in the context of theN-body problem. Since the notion of the inertia
tensor makes sense for general mechanical systems with symmetry, where it is called the
locked inertia tensor, and since it is an important ingredient in stability theory (see[22]),
it is natural to investigate the validity of Saari’s Conjecture in the more general context of
geometric mechanics.

1.2. A relative equilibrium criterion for mechanics on Lie groups

Consider a configuration manifoldQand a Lie groupG that acts freely and properly on the
left onQ. A Lagrangian simple mechanical system with symmetry consists of a Lagrangian
L : TQ → R that has the form of kinetic minus potential energy and that is invariant under
the tangent lifted action. Suppose that (qe, q̇e) ∈ TQ is a relative equilibrium that is generated
by a Lie algebra elementξ ∈ g, the Lie algebra ofG. That is, the group orbit exp(tξ) · qe is
a solution of the Euler–Lagrange equations. Lettingµ := J(qe, q̇e), whereJ : TQ → g∗ is
the standard equivariant momentum mapping associated to the action ofG, it is a simple
fact following from conservation and equivariance ofJ thatξ ∈ gµ, the Lie algebra of the
isotropy subgroupGµ.

Consider the specific case ofmechanics on Lie groups, that is, the case whenQ = G, a
(finite-dimensional) Lie groupG acting on itself by left multiplication and a kinetic energy
Lagrangian that is left-invariant under the natural lift of the action toTG. This case goes
by the name ofEuler–Poincaré theory(see[13] for a general discussion and background).
This paper establishes, in this case, a converse to the fact stated in the previous paragraph.
Namely,if ge is inG, µ ∈ g∗ andξ ∈ g satisfy the conditionsξ ∈ gµ andµ = J(ξG(ge)),
then(ge, ξG(ge)) is a relative equilibrium.By group invariance, it is of course enough to
prove such a statement at the identity element of the group.

If G = SO(n) (the real proper orthogonal group), this result has an interesting inter-
pretation in the context of the Manakov formulation of the rigid body inRn. (See, for
example,[3] for a recent discussion of the left-invariant Manakov equations for SO(n)
and references.) Forn = 3 the result specializes to the well-known fact that a necessary
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and sufficient condition for relative equilibrium of a rigid body inR3 is the alignment of
the angular velocity and the angular momentum, both measured in the spatial frame of
reference.

1.3. The status of the classical Saari’s Conjecture

The classicalN-body problem concerns the dynamics of particles with massesmA,1 ≤
A ≤ N at positionsqA(t) ∈ Rn (usually n = 2 or 3), relative to a fixed inertial frame,
interacting by a pairwise mutual Newtonian gravitational attraction (that is, the Newtonian
1/r attractive potential). As was mentioned above, Saari’s Conjecture states that a solution
of theN-body system has constant moment of inertia if and only if the system is in relative
equilibrium, that is, if the system is in uniform rotation with a constant angular velocity
about a fixed axis through the center of mass. The necessity of the condition of constant
moment of inertia for the system to be in relative equilibrium is obvious for the planar
problem. Saari’s Conjecture asks that one prove the converse.

Saari’s Conjecture has been proven for the planar three-body problem. McCord[15]
has proved this in the case of three equal masses, while Llibre and Piña[10] and Moeckel
[16] have proved it for three unequal masses using computer-assisted methods. In addition,
Diacu, Ṕerez-Chavela, and Santoprete[6] have proved Saari’s Conjecture for the case of
collinear relative equilibria in theN-body problem.

However, the general conjecture is still open forN ≥ 4.

1.4. The generalized Saari’s Conjecture

The third author of this paper orally conjectured, at the Cincinnati Midwest Dynamical
Systems meeting in October 2002, that the Saari’s Conjecture should have a generalization
to more general mechanical systems with symmetry. However, the examples in[4,5,19,21]
show that a generalized Saari’s Conjecture in the context ofN-body systems inR2 or R3

with power-law potential functions and rotational (SO(2)) symmetry about a fixed axis does
not hold. Chenciner’s counterexamples[4,5] involve a Hamiltonian (or Lagrangian) with a
Jacobi (1/r2) potential, and Roberts’ counterexamples[19] use either a Jacobi potential or
a class of homogeneous potentials with “masses” of opposite sign. Santoprete’s counterex-
ample[21] uses four equal masses in a harmonic oscillator potential. In these examples, the
SO(2)-invariance of the problem makes it obvious that a relative equilibrium necessarily
has constant moment of inertia.

1.5. The naive and refined Saari’s Conjecture

In this paper we also provide a counterexample to the naively stated generalized Saari
Conjecture simply by using the dynamics of a free rigid body inR3, a problem with SO(3)
symmetry. This counterexample reveals that, even for a free generalized rigid body, the
condition of having a relative equilibrium is not sufficient to ensure a constant-in-time
spatial moment of inertia tensor, unlike the case of the planarN-body problem. With this
counterexample in mind we propose and prove a refined generalized Saari Conjecture for
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a generalized rigid body; the key to the refinement is to consider more carefully which
componentsof the locked inertia tensor should be constant.

1.6. Outline

The flow of this paper is as follows. In the following section, we set up the notation
from geometric mechanics for a simple mechanical system with symmetry and interpret the
concepts of moment of inertia and relative equilibrium in this context. In the third section
we review geometric mechanics on Lie groups. In the fourth section we prove the main
result and apply it to the rigid body inR3 and to the Manakov formulation of the rigid body
in Rn. In the fifth section we show the counterexample to a generalized Saari’s Conjecture
for the generalized rigid body and refine the conjecture appropriately, and then we conclude
with suggestions for future investigations.

2. Simple mechanical systems with symmetry

This section recalls the geometric mechanical interpretation of the moment of inertia
and of a relative equilibrium in the context of a generic simple mechanical system with
symmetry. This exposition borrows both the notation and the results of[12]. We begin with
some general facts about simple mechanical systems from the Lagrangian viewpoint.

2.1. Simple mechanical systems

A Lagrangian simple mechanical system with symmetryon a configuration manifoldQ
consists of a LagrangianL : TQ → R of the form kinetic energy minus potential energy
that is invariant under the natural lift toTQ of the free and proper left action of a Lie
groupGonQ. The configuration spaceQpossesses, correspondingly, a metric〈〈 , 〉〉 whose
quadratic form is the kinetic energy, and thusG acts by isometries (that is, the metric is
invariant under the action ofG). Themomentum mappingcorresponding to the action ofG
onTQ is the mapJ : TQ → g∗ (as before,g is the Lie algebra ofG), given by the formula

J(vq)(ξ) = 〈〈vq, ξQ(q)〉〉,

whereξQ is the infinitesimal generator of the action onQcorresponding toξ ∈ g. Of course,
Noether’s Theorem guarantees thatJ is conserved along solutions of the Euler–Lagrange
equations.

2.2. Locked inertia tensor

Thelocked inertia tensoris defined to be the mappingI(q) : g→ g∗, for q ∈ Q, given by

〈I(q)η, ζ〉 := 〈〈ηQ(q), ζQ(q)〉〉 = J(ηQ(q))(ζ),

where〈 , 〉 is the natural pairing ofg andg∗.
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The name comes about from the fact that if one has, for example, two freely spinning
rigid bodies, connected by a ball-in-socket joint, then given a configurationq, the locked
inertia tensor is the inertia tensor for the rigid body obtained by locking, or welding, the
joint in this configuration.

We begin with the following equivariance result, which is an important ingredient in
establishing the needed equivariance property of themechanical connectionand whose
proof may be found in[22] (see also[12], Section 3.3), or which may be readily supplied
by the reader with a little definition chasing; we just remark that the proof makes use of the
following identity (see[13], Chapter 9):

(Adgξ)Q(q) = Φ∗
g−1(ξQ)(q) := TΦg(ξQ)(Φg−1(q)), (2.1)

whereΦg : Q → Q; q �→ g · q denotes the action by the group elementg.

Lemma2.1(Equivariance of the Locked Inertia Tensor).Under theprecedingassumptions,
for eachg ∈ G, q ∈ Q, andη, ζ ∈ g, we have

〈I(Φg(q))η, ζ〉 = 〈I(q)Adg−1η,Adg−1ζ〉.

Notice in particular that ifG is abelian thenI is literally invariant under the group
action.

2.3. Relative equilibria

Let (qe, q̇e) ∈ TQ be a relative equilibrium, andµ := J(qe, q̇e). By definition of a relative
equilibrium, there is aξ ∈ g such that the solution curve inTQwith initial condition (qe, q̇e)
is given by the one-parameter family

t �→ exp(tξ) · (qe, q̇e). (2.2)

By Noether’s Theorem, equivariance ofJ, and the basic fact that elements of the group
G that leave the setJ−1(µ) invariant are necessarily in the isotropy subgroupGµ

(see, for example,[14]), it also follows thatξ ∈ gµ, wheregµ is the Lie subalgebra
of Gµ.

We also need to recall that theaugmented potentialis defined to be

Vξ(q) := V (q) − 1
2〈I(q)ξ, ξ〉.

A powerful tool for the identification of relative equilibria is the “augmented potential
proposition,” which says that (qe, ξQ(qe)) is a relative equilibrium if and only ifqe is
a critical point ofVξ. There is a similar and also very useful criterion for theamended
potential, which is given by

Vµ(q) = V (q) + 1
2〈µ, I(q)−1µ〉.
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3. Mechanics on Lie groups

In this section we explore some general criteria for relative equilibria in the specific case
of mechanics on Lie groups; that is, whenQ = G. This topic, which really started in the
classical 1901 work of Poincaré [17], was revived in modern form in the important paper of
Arnold [2]. One can find most of what we will need in[1], Section 4.4 and[13], Chapter 13.

3.1. Some general facts

Consider a Lagrangian simple mechanical system with symmetry onG. In other words,
assume a Lagrangian onTG of the simple-mechanical form that is left invariant under
the natural lift of the left action ofG on itself. Since the potential must be constant, the
Lagrangian will be assumed to have only a kinetic energy term.

Recall thatbody coordinatesare defined by the mapλ : TG → G× g given by

λ(vg) = (g, TgLg−1(vg)),

andspatial coordinatesare defined by the mapρ : TG → G× g given by

ρ(vg) = (g, TgRg−1(vg)).

We note the identities

λ ◦ TLg ◦ λ−1(h, ξ) = (gh, ξ)

and

ρ ◦ TLg ◦ ρ−1(h, ξ) = (gh,Adgξ).

As emphasized in[22], the locked inertia tensor is naturally identified with thespatial
moment of inertia tensoras the following calculations show:

〈I(g)η, ζ〉 = 〈〈ηG(g), ζG(g)〉〉 =
〈〈

d

ds

∣∣∣∣
s=0

exp(sη)g,
d

dt

∣∣∣∣
t=0

exp(tζ)g

〉〉

= 〈〈TeRg(η), TeRg(ζ)〉〉 = 〈〈ρ−1(g, η), ρ−1(g, ζ)〉〉. (3.1)

3.2. The three-dimensional rigid body

The standard free rigid body is of course the case in whichG = SO(3). Recall the Lie
algebra isomorphism (R3,×) → (so(3), [·, ·]) given by

Θ =



Θ1

Θ2

Θ3


 �→ Θ̂ =




0 −Θ3 Θ2

Θ3 0 −Θ1

−Θ2 Θ1 0


 . (3.2)
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Consider a curveR(t) : R3 → R3 in SO(3) that gives the transformation between a refer-
ence configuration of the body and the current (spatial) configuration. Recall the definition
of the body coordinates for angular velocities via the following calculations,

λ(Ṙ(t)) = (R(t), TR(t)LR(t)−1Ṙ(t)) = (R(t), R(t)−1Ṙ(t)),

which leads one to define thebody angular velocityto be Ω̂ := R−1Ṙ ∈ so(3). Simi-
larly, ρ(Ṙ(t)) = (R(t), Ṙ(t)R(t)−1) motivates the definition ofspatial angular velocitŷω =
ṘR−1 ∈ so(3). To transform from body to spatial coordinates, observe that ˆω = AdRΩ̂;
that is, inR3, ω = RΩ.

The kinetic energy Lagrangian is

L = 1

2

∫
B
ρ(X)||ṘX||2 d3X.

whereρ is the material density,B is the body reference configuration inR3, andX ∈ B. One
easily checks that this Lagrangian is left invariant as a function onTSO(3). The metric on
SO(3) induced by this Lagrangian is also left invariant and may be defined at the identity as

〈〈Θ̂, Ξ̂〉〉e =
∫
B
ρ(X)(Θ× X) · (Ξ × X) d3X = Θ · JΞ,

where

J =
∫
B
ρ(X)(||X||2Id − X ⊗ X) d3X.

The formula for the matrixJ is easily obtained using the vector identity

(a× b) · (c× d) = (a · c)(b · d) − (a · d)(b · c),

andJ represents the inertia tensor (mass matrix) in body coordinates.
We may express the locked inertia tensorI(g) : so(3) → so(3)∗ as a 3× 3 matrix Ĩ,

which has direct interpretation as the inertia tensor (mass matrix) in spatial coordinates.

Θ · (Ĩ(g)Ξ) := 〈Θ̂, I(g)Ξ̂〉 = 〈〈Θ̂SO(3)(g), Ξ̂SO(3)(g)〉〉g = 〈〈Θ̂g, Ξ̂g〉〉g
= 〈〈g−1Θ̂g, g−1Ξ̂g〉〉e = 〈〈(g−1Θ)∧, (g−1Ξ)∧〉〉e
= (g−1Θ) · Ĩ(e)(g−1Ξ) = Θ · (gĨ(e)g−1Ξ).

Observing that̃I(e) = J, we obtain the formula

Ĩ(g) = gJg−1.

A one-parameter group orbit has the formR(t) = exp(tΩ̂)R(0). Excluding the trivial
caseΩ̂ = 0, a necessary condition for this curve to be a relative equilibrium is thatΩ ∈ R3
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correspond to a principal axis of rotation of the rigid body; in other words, thatΩ is an
eigenvector of the matrixJ. Observe that ifJΩ = αΩ for α ∈ R thenΩ̂ is an eigenvector
of the linear operator onso(3) defined by

Θ̂ �→ JΘ̂+ Θ̂J,

with eigenvalue (TrJ − α). Entities are expressed this way to link the discussion to the
n-dimensional rigid body, which is given later.

4. Relative equilibria for mechanics on Lie groups

In this section we develop a characterization of relative equilibria for the case of me-
chanics on Lie groups.

4.1. Conditions for a relative equilibrium

If (ge, ġe) ∈ TG is a relative equilibrium then there exists a uniqueξ ∈ g such that if
g(t) is the solution of the (second-order) Euler–Lagrange equations with initial conditions
(ge, ġe) theng(t) = (exptξ)ge, and in particular, ˙g|t=0 = ξG(ge).

The following proposition gives necessary and sufficient conditions for a relative equi-
librium of the free generalized rigid body.

Proposition 4.1. LetGact on itself by leftmultiplication and assumea left-invariant kinetic
energy Lagrangian on TG. Letξ ∈ g andge ∈ G. Then(ge, ξG(ge)) ∈ TgeG is a relative
equilibrium if and only ifξ ∈ gµ whereµ = J(ξG(ge)).

Proof. We saw one direction of the argument before: If (ge, ξG(ge)) is a point of rela-
tive equilibrium then the solution of the Euler–Lagrange equations with the initial condi-
tions (ge, ξG(ge)) is given byg(t) = exp(tξ)ge. Since, by Noether’s Theorem, (g(t), ġ(t)) ∈
J−1(µ), andJ is equivariant, it follows that exp(tξ) ∈ Gµ, or equivalently,ξ ∈ gµ.

Conversely, notice that the augmented potential associated with the Lie algebra element
ξ is given by

Vξ(g) = −1
2〈I(g)ξ, ξ〉 =: −1

2〈I(·)ξ, ξ〉(g).

Let δg be an arbitrary vector inTgeG and writeδg = ζG(ge) for ζ ∈ g. With the help of
Lemma 2.1, the derivative ofVξ in the directionδg is given by

dgeVξ · δg= dgeVξ · ζG(ge) = −1

2
dge〈I(·)ξ, ξ〉 · ζG(ge)

= −1

2

d

dt

∣∣∣∣
t=0

〈I(exp(tζ)ge)ξ, ξ〉= − 1

2

d

dt

∣∣∣∣
t=0

〈I(ge) Adexp(−tζ)ξ,Adexp(−tζ)ξ〉

= − 〈I(ge)ξ,adξζ〉= −〈J(ξG(ge)),adξζ〉= −〈µ,adξζ〉= −〈ad∗
ξµ, ζ〉 = 0,
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the last equality holding becauseξ ∈ gµ. Therefore,ge is a critical point ofVξ, and hence,
by the augmented potential proposition, (ge, ξG(ge)) is a relative equilibrium. �

It is a general fact that relative equilibria come in sets: they are unions of group orbits.
This can also be seen directly in the present context and the proof is somewhat instructive,
so we include it.

Corollary 4.1. If (e, ξG(e)) is a relative equilibrium andg ∈ G, then the left translation of
(e, ξG(e)) by g is also a relative equilibrium.

Proof. FromEq. (2.1), the tangent of left translation by the group elementg is given by
TLgξG(e) = (Adgξ)G(g). Therefore, it suffices to show thatg is a critical point ofVAdgξ. In
fact,

dgVAdgξ(ζG) = −1

2

d

dt

∣∣∣∣
t=0

〈I(exp(tζ)g)Adgξ,Adgξ〉

= −1

2

d

dt

∣∣∣∣
t=0

〈I(e)Adg−1 exp(−tζ)gξ,Adg−1 exp(−tζ)gξ〉

= 〈I(e)ξ,adAd
g−1ζξ〉 = µ(adAd

g−1ζξ) = −µ(adξAdg−1ζ)

= −ad∗
ξµ(Adg−1ζ) = 0,

since, by hypothesis,ξ ∈ gµ. �

4.2. The n-dimensional rigid body

For the case of the rigid body inRn, G = SO(n). We now recall the basic set up of
this system following[11] and[18]. First of all, choose, on the Lie algebrag = so(n), the
following inner product, which is a multiple of the Killing form:

〈ξ, η〉 = −1
2Tr(ξη). (4.1)

(The factor−1/2 is chosen so that (4.1) agrees with the Euclidean inner product when
n = 3.)

The locked inertia tensor at the identity, that is, the kinetic energy inner product onso(n),
is represented by a symmetric positive-definite linear operatorJ on so(n); that is,

〈〈A,B〉〉 = 〈A,JB〉.

Assuming all of the eigenvalues ofJ are distinct, it may be represented as

J(ξ) = Λξ + ξΛ,

for a diagonal matrixΛ = diag(Λ1,Λ2, . . . , Λn), andΛi +Λj > 0 if i �= j. If Eij are
the standard basis vectors forgl(n), then a basis of eigenvectors ofJ is given by{Eji −
Eij | i < j} and the corresponding eigenvalues are{Λi +Λj | i < j}. This representation
is generally known as then-dimensional Manakov rigid body. (See, for example,[3] for
further information and references.)
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As before, letJ be the standard tangent lifted momentum mapping corresponding to the
action of SO(n) on itself; ifµ := J(ξSO(n)(e)) then

〈µ, ζ〉 = −1
2Tr(J(ξ)ζ). (4.2)

Corollary 4.2. Let ξ ∈ so(n) \ {0} andµ = J(ξSO(n)(e)). Thenξ is an eigenvector ofJ if
and only ifξ ∈ so(n)µ.

Proof. It is easy to see directly thatξ is an eigenvector ofJ if and only if (e, ξG(e)) is a
relative equilibrium, and so the corollary follows fromProposition 4.1. However, a proof
worked out usingEq. (4.2) is also instructive.

If J(ξ) = λξ then〈µ, ζ〉 = −(λ/2) Tr(ξζ), so

〈ad∗
ξµ, ζ〉 = −1

2λTr(ξadξζ) = −1
2λTr(ξ(ξζ − ζξ)) = −1

2λ(Tr(ξ2ζ) − Tr(ξζξ)) = 0,

and therefore,ξ ∈ so(n)µ. Conversely, ifξ ∈ so(n)µ then

0 = ad∗
ξµ(ζ) = µ([ξ, ζ]) = −1

2Tr(J(ξ)[ξ, ζ]) = −1
2Tr([J(ξ), ξ], ζ) = 〈[J(ξ), ξ], ζ〉

for arbitraryζ. Thus [J(ξ), ξ] = 0. Therefore,J(ξ) is in a maximal abelian subalgebra of
so(n) containingξ. But inso(n) the dimension of such a subalgebra is necessarily one. Thus
J(ξ) = λξ for someλ ∈ R. BecauseJ is positive definite, it follows thatλ �= 0. �

Forn = 3, whenso(3) is identified withR3 via the Lie algebra isomorphism (3.2),Jmay
be identified with the linear operatorJ on R3, whose matrix form represents the moment
of inertia in body coordinates. If we assume thatJ = diag(λ1, λ2, λ3), where theλi are
distinct and positive, then the eigenvectors ofJ are the standard orthonormal basis vectors
{e1,e2,e3} and are also the principal axes of the rigid body. The eigenvaluesλi of J (and
of J) are given by the relationship



λ1

λ2

λ3


 =




0 1 1

1 0 1

1 1 0






Λ1

Λ2

Λ3


 ;

that is,λi = Tr(Λ) −Λi. Corollary 4.2now takes a special form.

Corollary 4.3. Let Ω̂ ∈ so(3) \ {0}, and Π̂ = J(Ω̂SO(3)(e)). The corresponding nonzero
vectorΩ ∈ R3 is a principal axis of the rigid body if and only if̂Ω ∈ so(3)Π .

Proof. This follows directly fromCorollary 4.2, but we shall present a proof that emphasizes
explicitly the vector algebra inR3.

If Ω is a principal axis, that is, ifJΩ = λΩ for someλ ∈ R×, then for anyΞ ∈ R3,

Π(Ξ) = Π̂(Ξ̂) = ΩT
JΞ = (JΩ)TΞ = λΩTΞ.

In other words,Π = λΩT ∈ R3∗, and

ad∗
Ω̂
Π̂(Ξ̂) = λ(ΩT(Ω×Ξ))∧ = 0,
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or, abusing notation slightly,

ad∗
ΩΠ = λad∗

ΩTΩ = λadΩΩ = λ(Ω×Ω) = 0,

soΩ̂ ∈ so(3)Π .
Conversely, ifΩ̂ ∈ so(3)Π then for arbitraryΞ ∈ R3,

0 = ad∗
Ω̂
Π̂(Ξ̂) = Π̂([Ξ̂, Ξ̂]) = ΩT

J(Ω×Ξ) = (JΩ)T(Ω×Ξ),

and thus the collection of vectors{Ω, JΩ,Ξ} is linearly dependent. BecauseΞ is arbitrary,
JΩ = λΩ for someλ ∈ R×. �

The usual criterion for a relative equilibrium is that the body angular velocity is an
eigenvector of the inertia tensor, which is equivalent to the body angular velocity and
the body angular momentum being parallel. What we have shown in the case of then-
dimensional rigid body is that this criterion is consistent with our general criterion:ξ ∈ gµ.

5. A generalized Saari’s Conjecture

Motivated byProposition 4.1, we seek to generalize Saari’s Conjecture, focusing on the
case of mechanics on Lie groups. First we state an appropriate generalization of the original
conjecture in the context of simple mechanical systems with symmetry.

5.1. A proposed generalization

For a simple mechanical system with symmetry, we could interpret the moment of inertia
to be the locked inertia tensor. Therefore a logical generalization of Saari’s Conjecture could
state:

Naive Saari’s Conjecture: A simple mechanical system with symmetry is at a point
of relative equilibrium if and only if the locked inertia tensor is constant along the
integral curve that passes through that point.

Note that for the planarN-body problem with SO(2) symmetry this naive conjecture
reduces to the original Saari’s Conjecture. However, this conjecture is naive for two reasons:
First, as discussed earlier, this conjecture is false for more general gravitational potentials
than the Newtonian potential, so the conjecture is too broadly stated, even for planarN-body
problems. Second, one must be more careful with what is meant by the constancy of the
locked inertia tensor for nonabelian groups.

5.2. The rigid body counterexample

Let us now show that the naive Saari’s Conjecture is false even for the rigid body in
R3. Again, assume thatJ = diag(λ1, λ2, λ3), where theλi are all distinct and nonzero. Let
R(t) ∈ SO(3) represent rotation byt radians about thee3 axis. Clearly,R(t) is an equilibrium
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curve through the identity of SO(3) and its body angular velocity is always parallel toe3.
Recall that the time evolution of the locked inertia tensor is described by

Ĩ(R(t)) = R(t)JR−1(t).

Now, att = 0,

Ĩ(R(0))e2 := Je2 = λ2e2.

But att = π/2,

Ĩ(R( 1
2π))e2 = R( 1

2π)JR(−1
2π)e2 = R( 1

2π)J e1 = λ1R( 1
2π)e1 = λ1 e2,

and soI is not constant.

5.3. A refined conjecture and proof

The above counterexample occurs in the so-called “easy” direction—the direction that
was immediately true for Saari’s original conjecture. We may modify the naive Saari’s
Conjecture slightly to accommodate this counterexample. The following proposition applies
to a general configuration spaceQwith the free left action of a Lie groupG onQ.

Proposition 5.1. Consider a Lagrangian simple mechanical system with symmetry. If a
solution curveqe(t) in Q is a relative equilibrium curve, that is, if there exists aξ ∈ g such
thatqe(t) = exptξ · qe(0) for anyt ∈ R, then for anyζ ∈ g

〈I(qe(t))ξ, ζ〉

is constant along the curveqe(t); that is, I(qe(t))ξ, as a curve ing∗, is constant.

Proof. Rephrasing, the proposition states that the momentum mappingJ : TQ → g∗ sat-
isfies the relation

J(ξQ(exp(tξ) · qe(0))) = J(ξQ(qe(0))).

To see this, note that

ξQ(exp(tξ) · qe(0)) = d

ds
exp(sξ) · (exp(tξ) · qe(0))

∣∣∣∣
s=0

= d

ds
exp(tξ) · (exp(sξ) · qe(0))

∣∣∣∣
s=0

= TLexp(tξ)(ξQ(qe(0))),

and invoking the equivariance ofJ,

J(ξQ(exp(tξ) · qe(0))) = J(TLexp(tξ)(ξQ(qe(0))))

= Ad∗
exp(−tξ)J(ξQ(qe(0))) = J(ξQ(qe(0))),
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because, by Noether’s Theorem and the equivariance ofJ, if J(ξQ(qe(0))) = µ then
exp(tξ) ∈ Gµ. �

If G = SO(2) (such as in Saari’s original conjecture) then it follows immediately from
Proposition 5.1that a relative equilibrium necessarily has a constant scalar moment of
inertia.

Proposition 5.1establishes the “easy” direction of the

Refined Saari Problem: Find classes of simple mechanical systems with symmetry
such that a solution of the Euler–Lagrange equations q(t) is a relative equilibrium if
and only ifI(q(t))ξ is constant as a curve ing∗, whereξQ(q(0)) = q̇(0).

Of course the counterexamples forN-body problems with SO(2) symmetry show that
while the solution to the Refined Saari Problem includes the classical three-body problem,
it cannot include all simple mechanical systems with symmetry. However, we now show
that itdoesinclude systems on Lie groups.

Proposition 5.2. The solution to the Refined Saari Problem includes the class of simple
mechanical systems with symmetry defined on Lie groups; that is, if g(t) is a geodesic in G
and ifξ ∈ g is defined byξ := ġ(0) · g−1(0) and if for eachη ∈ g, the quantity〈I(g(t))ξ, η〉
is constant in t then g(t) is a relative equilibrium.

Remark.To motivate whyξ is taken to be ˙g(0) · g−1(0) (the spatial velocity att = 0) and
not g−1(0) · ġ(0) (the body velocity att = 0), note that if we have a relative equilibrium
g(t) = (exp(tξ)) · g(0), thenġ(0) = ξ · g(0) and soξ = ġ(0) · g−1(0).

Proof. Consider the curveγ(t) = g(t) · g−1(0) which satisfiesγ(0) = e and γ̇(0) = ξ. It
follows that

ξG(g(0)) = d

dt

∣∣∣∣
t=0
γ(t) · g(0) = d

dt

∣∣∣∣
t=0
g(t) = ġ(0).

By hypothesis, for arbitraryη ∈ g,

0 = d

dt
〈I(g(t))ξ, η〉,

and byLemma 2.1,

0 = d

dt
〈I(e)Adg−1(t)ξ,Adg−1(t)η〉. (5.1)

Now

d

dt

∣∣∣∣
t=0
g−1(t) = −g−1(0) · ġ(0) · g−1(0) = −g−1(0) · ξ = d

dt

∣∣∣∣
t=0
g−1(0) exp(−tξ),

so the curvesg−1(t) andg−1(0) exp(−tξ) have tangent vectors that agree att = 0, and thus

d

dt

∣∣∣∣
t=0

Adg−1(t)ζ = d

dt

∣∣∣∣
t=0

Adg−1(0) exp(−tξ)ζ, (5.2)
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for anyζ ∈ g. Letµ := J(g(0), ġ(0)). UsingEqs. (5.1) and (5.2),

0 =
〈

I(e)
d

dt

∣∣∣∣
t=0

Adg−1(0) exp(−tξ)ξ,Adg−1(0)η

〉

+
〈

I(e)Adg−1(0)ξ,
d

dt

∣∣∣∣
t=0

Adg−1(0) exp(−tξ)η
〉

= 〈I(e)Adg−1(0)ad(−ξ)ξ,Adg−1(0)η〉 + 〈I(e)Adg−1(0)ξ,Adg−1(0)ad(−ξ)η〉
= −〈I(g(0))ξ,adξη〉 = −〈J(ξG(g(0))),adξη〉 = −〈µ,adξη〉 = −〈ad∗

ξµ, η〉.
Therefore,ξ ∈ gµ, and soProposition 4.1tells us that (g(0), ġ(0)) is a relative equilibrium.

�
Given ξ as defined in the preceding proposition, there may be otherξ′ such that

〈I(g(t))ξ′, ·〉 is constant alongg(t) = exp(tξ)g(0). For example, ifξ′ is in the maximal
abelian subalgebra that containsξ then this is the case.

One final comment: the general criterionξ ∈ gµ also holds in the case of ideal fluid
mechanics, which was one of the original motivating examples of both Poincaré [17] and
Arnold [2]; this condition states that one has a relative equilibrium when the stream function
for the velocity field and the vorticity field are functionally dependent.

6. Conclusions

We have introduced a Lie-algebraic condition that is a necessary and sufficient condition
for relative equilibria in simple mechanical systems with symmetry on Lie groups. This
result led us to a proof of a “Refined Saari’s Conjecture” for this class of mechanical systems.

Our results leave much room for further investigation. We may want to consider cases
where the eigenvalues of the inertia tensor in body coordinates are degenerate. We may also
attempt to extend our results to actions of a Lie subgroup of the group and to more general
simple mechanical systems with symmetry.

An interesting generalization of what we have done might be to examine a combination
of the Newtonian gravitational problem with the rigid body problem, namely, does the
Refined Saari Probleminclude the case of irregular rigid bodies interacting with each other
through gravitational attraction? Problems such as this are of considerable astrodynamical
interest and go by the name offull body problems; see, for example,[8].

Lawton and Noakes[9] have shown that if a curve inR3 describes the angular velocity
of a rigid body and that curve satisfies the condition that it not be contained in a two-
dimensional subspace ofR3, then the inertia operator may be computed up to a scaling
factor. They provide two indirect methods of constructing the inertia operator and one
direct method. The direct method is obtained by momentum mapping identities derived
from symmetries in Euler’s equation. This work is consistent with the present paper in that
observations of the inertia tensor allows one to back out certain dynamical information.

It would also be interesting to see if there are any relations with the work of Fehér and
Marshall[7], who investigate the stability of equilibria of certain integrable Euler equations
associated with SO(n).
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